Conformal Killing graphs with prescribed mean curvature

نویسنده

  • H. de Lira
چکیده

We prove the existence and uniqueness of graphs with prescribed mean curvature function in a large class of Riemannian manifolds which comprises spaces endowed with a conformal Killing vector field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O ct 2 00 7 Killing graphs with prescribed mean curvature and Riemannian submersions

It is proved the existence and uniqueness of graphs with prescribed mean curvature in Riemannian submersions fibered by flow lines of a vertical Killing vector field.

متن کامل

Conformal Curvature Flows on Compact Manifold of Negative Yamabe Constant

Abstract. We study some conformal curvature flows related to prescribed curvature problems on a smooth compact Riemannian manifold (M, g0) with or without boundary, which is of negative (generalized) Yamabe constant, including scalar curvature flow and conformal mean curvature flow. Using such flows, we show that there exists a unique conformal metric of g0 such that its scalar curvature in the...

متن کامل

Conformal Immersions of Prescribed Mean Curvature in R3

We prove the existence of (branched) conformal immersions F : S → R with mean curvature H > 0 arbitrarily prescribed up to a 3-dimensional affine indeterminacy. A similar result is proved for the space forms S, H and partial results for surfaces of higher genus.

متن کامل

ESI The Erwin

We prove that the space-time developments of generic solutions of the vacuum constraint Einstein equations do not possess any global or local Killing vectors, when Cauchy data are prescribed on an asymptotically flat Cauchy surface, or on a compact Cauchy surface with mean curvature close to a constant, or for CMC asymptotically hyperbolic initial data sets. More generally, we show that non-exi...

متن کامل

KIDs are non-generic

We prove that the space-time developments of generic solutions of the vacuum constraint Einstein equations do not possess any global or local Killing vectors, when Cauchy data are prescribed on an asymptotically flat Cauchy surface, or on a compact Cauchy surface with mean curvature close to a constant, or for CMC asymptotically hyperbolic initial data sets. More generally, we show that non-exi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008